Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials
نویسنده
چکیده
Abstract. We introduce a spectral transform for the finite relativistice Toda lattice (RTL) in generalized form. In the nonrelativistic case, Moser constructed a spectral transform from the spectral theory of symmetric Jacobi matrices. Here we use a nonsymmetric generalized eigenvalue problem for a pair of bidiagonal matrices (L, M) to define the spectral transform for the RTL. The inverse spectral transform is described in terms of a terminating T-fraction. The generalized eigenvalues are constants of motion and the auxiliary spectral data have explicit time evolution. Using the connection with the theory of Laurent orthogonal polynomials, we study the long-time behaviour of the RTL. As in the case of the Toda lattice the matrix entries have asymptotic limits. We show that L tends to an upper Hessenberg matrix with the generalized eigenvalues sorted on the diagonal, while M tends to the identity matrix.
منابع مشابه
Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions
We consider the class of biorthogonal polynomials that are used to solve the inverse spectral problem associated to elementary co-adjoint orbits of the Borel group of upper triangular matrices; these orbits are the phase space of generalized integrable lattices of Toda type. Such polynomials naturally interpolate between the theory of orthogonal polynomials on the line and orthogonal polynomial...
متن کاملMultivariate Orthogonal Laurent Polynomials and Integrable Systems
An ordering for Laurent polynomials in the algebraic torus (C∗)D, inspired by the Cantero–Moral– Velázquez approach to orthogonal Laurent polynomials in the unit circle, leads to the construction of a moment matrix for a given Borel measure in the unit torus T. The Gauss–Borel factorization of this moment matrix allows for the construction of multivariate biorthogonal Laurent polynomials in the...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملBivariate orthogonal polynomials, 2D Toda lattices and Lax-type pairs
We explore the connection between an infinite system of particles in R2 described by a bi–dimensional version of the Toda equations with the theory of orthogonal polynomials in two variables. We define a 2D Toda lattice in the sense that we consider only one time variable and two space variables describing a mesh of interacting particles over the plane. We show that this 2D Toda lattice is rela...
متن کاملInverse Scattering Transform for the Toda Hierarchy
We provide a rigorous treatment of the inverse scattering transform for the entire Toda hierarchy. In addition, we revisit the connection between trace formulas and conserved quantities from the viewpoint of Krein’s spectral shift theory.
متن کامل